目 次

第1章	こ バッチ晶析とは	1
1.1	バッチ晶析はどのように使われるか	1
1.2	バッチ晶析は何が得意か	4
1.3	バッチ晶析の欠点	7
コラ	- ム 1-1 滞留時間分布	10
第2章	□ 粒径の制御(1)シーディング法 ····································	11
2.1	シーディング効果とそのメカニズム	11
2.2	理想成長曲線とシード添加量	15
2.3	シードチャート	16
2.4	シーディング条件,製品結晶粒径およびバッチ運転時間	19
2.5	シーディング効果に対する冷却モードおよび	
	スケールアップの影響	22
2.6	貧溶媒晶析に対するシーディング法の適用	26
コラ	・ム 2-1 平均体積径と体積平均径	31
第3章	□ 粒径制御(2)温度制御法 ····································	32
3.1	簡単な歴史	32
3.2	製品結晶粒径に対する温度制御法の効果	39
3.3	多段冷却法	43
コラ	・ム 3-1 準安定域	48
第 4 章	〕 形状制御, 多形制御および光学分割 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	49
4.1	結晶形状制御	49
4.2	結晶多形制御	57
4 3	結晶化による光学分割	63

第5章	結晶収量の計算および装置設計と生産速度	70
5.1	溶解度の測定と表し方	70
5.2	結晶理論収量の計算	76
5.3	装置容積と生産量	79
第6章	核化	82
6.1	一次核化	82
6.2	二次核化	90
コラ	ム 6-1 高過飽和では均質核化?	98
コラ	ム 6-2 均質核化は実現可能か?	99
第7章	: 結晶成長 ····· 10	00
7.1	結晶成長における3つの速度過程	00
7.2	成長速度の定義	01
7.3	表面集積過程	02
7.4	結晶成長に対する不純物の影響 10	06
7.5	成長速度の工学的取扱い 1	14
コラ	ム 7-1 不純物の間をすり抜けるときのステップの前進速度 1	19
コラ	ム 7-2 成長速度の分散	20
コラ	ム 7-3 ΔL の法則 ···································	21